Abstract
Autophagy is an essential degradative process that governs the renewal of organelle and maintains the homeostasis of cellular microenvironment. Its dysregulation has been demonstrated to be an indicator for neuroinflammation. To elucidate the interrelationship between neuroinflammation and autophagy, optical probes are ideal tools as they offer a number of advantages such as high spatiotemporal resolution and non-invasive sensing, which help to visualize the physiological and pathological functions of interested analytes. However, single autophagy parameter-response probes may generate false-positive results since they cannot distinguish between neuroinflammation and other autophagic stimuli. In contrast, chemosensors that respond to two (or more) targets can improve selectivity by qualifying response conditions. Herein, a “dual-key-and-lock” strategy was applied to construct probe (Vis-NO) to selectively recognize autophagy under inflammation out of other stimuli. The red fluorescence of Vis-NO was lit up only in the simultaneously presence of high viscosity and nitric oxide (NO) in lysosome. Due to the characteristics of high viscosity and overexpressed NO within lysosomes, Vis-NO could be used to selectively identify autophagy during neuroinflammation, providing expanding insights into the interrelationship between autophagy, neuroinflammation and stroke in pathology, and informing about the mechanisms through which autophagy regulates inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.