Abstract

This paper presents the dual interpolation boundary face method combined with a Hermite-type moving-least-squares approximation for solving complex two-dimensional potential problems. Compared to the standard algorithms, this combined method is better suited for structures with small feature sizes such as short edges and small chamfers. The interpolation functions, if constructed in cyclic coordinates, making it difficult to apply this new method to deal with complex structures with small feature sizes in which only one source point is assigned. The Hermite-type approximation formulated in Cartesian coordinates is able to completely overcome this obstacle by searching for source points on adjacent edges. Additionally, an improved and incomplete quadratic polynomial basis is presented to obtain an accurate algorithm for the Hermite-type approximation. We use several numerical examples to demonstrate the high accuracy and efficiency of the proposed method for solving various engineering structures with small feature sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.