Abstract

Achieving an excellent combination of mechanical properties and electrical conductivity in conductive copper alloys is highly desirable but remains a great challenge. This paper reports a dual heterogeneous laminated (DHLed) Cu/Cu-Cr-Zr composite structure in copper alloys produced by accumulative roll bonding (ARB) and annealing process that can produce an excellent property combination: high strength (ultimate tensile strength: 563.4 ± 14 MPa), sufficient tensile ductility (uniform elongation: ~16.2%), and high conductivity (~92%IACS). The specially designed DHLed Cu/Cu-Cr-Zr composite microstructure is characterized by alternating coarse- and ultra-fine grain layers and layered distribution of precipitations. Such dramatic microstructure heterogeneities produce significant hetero-deformation induced hardening due to mechanical incompatibility between soft Cu and hard Cu-Cr-Zr layers, which leads to an excellent combination of strength and ductility. The high conductivity can be attributed to the unique DHLed Cu/Cu-Cr-Zr composite structure containing alternating recrystallized- and nanolaminated-grain layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.