Abstract

KRAS gene is mutated in 40% of colorectal cancers (CRC), which induces malignant proliferation by regulating cellular nutrient metabolism and biosynthesis. It has been found that malignant proliferation of KRAS-mutant colorectal cancer relies on the upregulation of SLC25A22 protein expression, suggesting that inhibition the expression of both KRAS and SLC25A22 is a potential CRC therapeutics. Stably knocking down the oncogenic KRAS-G12V gene can achieve long-term gene therapy effects, while transient downregulation of SLC25A22, a normal functional gene most of the time, is preferred to kill tumor cells and minimize the side impact on normal cells. Here, two lipid nanoparticles (LNP) were designed to encapsulate KRAS-G12V CRISPR/Cas9 gene editing plasmids (pKRAS-LNPs) and SLC25A22 siRNA (siSLC-LNPs), respectively. Therapeutic effects of both nanoparticles alone and in combination on KRAS-G12V mutant colorectal cancer cells in vitro were first examined. The result showed that delivery of pKRAS-LNPs or siSLC-LNPs alone could effectively achieve KRAS-G12V gene editing or SLC25A22 gene silencing and inhibit tumor cell proliferation, while co-delivery of both LNPs could achieve stronger inhibition of tumor cell proliferation by inducing stronger apoptosis. Furthermore, we found that co-delivery of pKRAS-LNPs and siSLC-LNPs induced stronger apoptosis and cell proliferation inhibition compared to pKRAS&siSLC-LNPs that were constructed by pre-mixing pKRAS and siSLC and then encapsulating them. Finally, we validated that co-delivery of pKRAS-LNPs and siSLC-LNPs can achieve KRAS-G12V colorectal cancer treatment in vivo with a tumor inhibition rate of 61.15%. In summary, the delivery vectors constructed for nucleic acids targeting KRAS and SLC25A22 achieved therapeutic targeting of KRAS-G12V colorectal cancer in vitro and in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call