Abstract

Blind image denoising and edge-preserving are two primary challenges to recover an image from low-level vision to high-level vision. Blind denoising requires a single denoiser can denoise images with any intensity of noise, and it has practical utility since accurate noise levels cannot be acquired from realistic images. On the other hand, edge preservation can provide more image features for subsequent processing which is also important for the denoising. In this paper, we propose a novel blind universal image denoiser to remove synthesis and realistic noise while preserving the image texture. The denoiser consists of noise network and prior network parallelly, and then a fusion block is used to give the weight between these two networks to balance computation cost and denoising performance. We also use the Non-subsampled Shearlet Transform (NSST) to enlarge the size of receptive field to obtain more detailed information. Extensive denoising experiments on synthetic images and realistic images show the effectiveness of our denoiser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.