Abstract
Long, homogeneously glycosylated peptides and proteins can be assembled from multiple segments via sequential chemoselective reactions. The efficiency of the synthesis depends on the effectiveness and number of steps and on their compatibility with glycosylation methods. Here, we present how the combination of auxiliary-mediated native chemical ligation and thioester generation via hydrazinolysis from Wang-type resin enables multiple, sequential N-to-C and C-to-N ligations. The method can be applied to glycosylated peptides and peptide α-thioesters and has the potential to be further extended to sequential glycosylation, thus paving the way to the synthesis of complex homogeneous glycoproteins. We applied this methodology to the synthesis of long MUC1 variants comprising 2, 4 and 6 tandem repeats and three O-glycosylations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.