Abstract

Conductive polyelectrolytes such as P3CT-Na have been widely used as efficient hole-transporting layers (HTLs) in inverted perovskite solar cells (PSCs) due to their high hole mobility. However, the acid-base neutralization reaction is indispensable for preparing such polyelectrolytes and the varied content of cations usually leads to poor reproducibility of the device performance in PSCs. In this work, a commercially available polymer poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CT) was directly applied as an HTL in PSCs for the first time. Encouragingly, it was found that due to the dual functionality of carboxyl groups on side chains, a thin layer of P3CT can not only strongly anchor on ITO electrode and optimize its work function but also show an effective passivation effect toward perovskite active layer. Benefiting from such dual functionality, a uniform perovskite film with better quality was obtained on P3CT. As a result, the P3CT-based PSCs show much lower nonradiative recombination and achieve a champion power conversion efficiency (PCE) of 21.33% with a high fill factor (FF) of 83.6%. Impressively, as the device area is increased to 0.80 cm2, a PCE of 19.65% can still be obtained for the PSCs based on P3CT HTL. Our work provides important strategy for developing HTLs for high-performance PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.