Abstract

Biguanides (i.e. metformin, phenformin and buformin) are antidiabetic drugs with potential antitumor effects. Herein, a polycationic polymer, N,N′-bis(cystamine)acrylamide-buformin (CBA-Bu), containing multiple biodegradable disulphide bonds and buformin-mimicking side chains was synthesised. CBA-Bu was equipped with high efficiency and safety profile for gene delivery, meanwhile exhibiting potential antitumor efficacy. As a gene vector, CBA-Bu was able to condense plasmid DNA (pDNA) into nano-sized (<200 nm), positively-charged (>30 mV) uniform polyplexes that were well resistant to heparin and DNase I. Due to the reduction responsiveness of the disulphide bonds, CBA-Bu/pDNA polyplexes could release the loaded pDNA in the presence of dithiothreitol, and induce extremely low cytotoxicity in NIH/3T3 and U87 MG cells. The transfection results showed that CBA-Bu had a cellular uptake efficiency comparable to 25 kDa PEI, while a significantly higher gene expression level. Additionally, CBA-Bu had a lower IC50 value than its non-biguanide counterpart in two cancer cell lines. Furthermore, CBA-Bu could activate AMPK and inhibit mTOR pathways in U87 MG cells, a mechanism involved in the antitumor effect of biguanides. Taken together, CBA-Bu represented an advanced gene vector combining desirable gene delivery capability with potential antitumor activity, which was promising to achieve enhanced therapeutic efficacy in antitumor gene therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call