Abstract
The enzyme hybrid nanoflower has gained interests in biosensors due to their simple synthesis and high efficiency. In this study, glutamate oxidase (GLOX) and horseradish peroxidase (HRP) hybrid nanoflowers (GLOX&HRP-HNFs) were successfully prepared for the detection of glutamic acid (Glu). The effects of the synthesis conditions on the activity of GLOX & HRP-HNFs were investigated. Results revealed that the maximum activity of GLOX&HRP-HNFs was under 4 mM phosphate radical, 2.5 mM MnSO4, 0.04 mg/mL GLOX, and 0.16 mg/mL HRP. After immobilization, no significant differences were observed in optimum pH and temperature values of the GLOX and HRP. The GLOX&HRP-HNFs exhibited higher storage stability and resistance to organic solvents than free GLOX and HRP. Additionally, the GLOX&HRP-HNFs maintained 69% of its primary activity after 6 cycles. More important, the GLOX&HRP-HNFs exhibited a good linear range from 1 to 100 μM (R2 = 0.9979) and a low limit of detection (LOD) of 0.59 μM for glutamate. These results suggest that the GLOX&HRP-HNFs is a promising candidate for applications in biosensing for the detection of glutamate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.