Abstract

Solid waste recycling is an essential approach for the sustainable transition of transportation infrastructure development. In this study, a holistic model for recycled waste pavement was developed, achieving a breakthrough in eco-efficiency-based pavement material design. Using this model, we can not only individually assess the technical feasibility of the pavement material and its carbon emissions, but also realize the unified dimensional quantification of multidimensional parameters based on decision-making expectations using a metrics fusion system, thus achieving high-level sustainability decisions for pavement schemes. The proposed model was validated by evaluating the comprehensive properties of steel slag pavements to determine a suitable and durable pavement solution. This study provides a decarbonization strategy for the transportation sector considering waste-recycled pavement design, which may promote the development of more resilient transportation infrastructure and significantly contribute to achieving carbon neutrality and mitigating climate change.•A model for solid waste pavement was established based on synthesized assessing feasibility and carbon emissions.•The field performance and climate system impacts of pavements with solid waste materials were assessed.•It was demonstrated that recycling steel slag for pavement construction can reduce carbon emissions by >50 %.•Our results contribute to achieving sustainable transportation infrastructure systems to mitigate climate issues.•Our methodology can be used not only for road construction but also in the civil engineering field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.