Abstract

Phase sensitive X-ray imaging methods can provide substantially improved contrast over conventional absorption-based techniques, and therefore new and inaccessible information. Here we propose a dual detector approach for X-ray differential phase contrast imaging, which allows a quantitative retrieval of the object's phase information by a single exposure. The analysis performed in our research shows that compared with the phase-stepping method, the dual detector approach is advantageous in fast imaging speed, reduced radiation dose and alignment errors, and avoiding any problems resulting from motion artifacts and X-ray exposure reproducibility. The approach has a direct extension to single exposure two-dimensional differential phase contrast imaging, as well as the possibility to perform three-dimensional reconstruction of the refractive index and its gradient field. We believe that this approach can find its potential in clinical applications, where imaging speed and radiation dose are critical issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.