Abstract

As a flexible and convenient tool, a repetitive pulsed high magnetic field (RPHMF) would be employed for scientific research and industrial applications. A novel RPHMF system design adopting a dual-capacitors type energy recovery power system is introduced in this paper. The energy stored in the magnet can be fed back to the capacitor by a choke coil and a resonant capacitor while the energy dissipated in the discharge will be replenished to the capacitor through a high frequency resonant capacitor charging power system (CCPS). The main advantages of the design are as followed: first, the energy feedback make the system more efficient; second, during the whole process there is no reverse voltage on the metalized film capacitors, improving the energy storage capacitors’ service lifetime and reliability remarkably; finally, convenience can be brought to the high frequency CCPS’s application. In this paper, theoretic analysis of RPHMF system is described and an experimental device with a bitter magnet as the load is built to test the design for its verification. A 1.2 Hz, 8 T repetitive pulsed high magnetic field is generated. Experimental results show that there is no reverse voltage on the energy storage capacitors in the whole process. The factors influencing the efficiency and frequency of the system are analyzed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call