Abstract
In this paper, a hand exoskeleton system for virtual reality is proposed. As a virtual reality interface for the hand, a wearable system should be able to measure the finger joint angles and apply force feedback to the fingers at the same time with a simple and light structure. In the proposed system, two different cable mechanisms are applied to achieve such requirements; three finger joint angles in the direction of the flexion/extension (F/E) motion are measured by a tendon-inspired cable mechanism and another cable is used for force feedback to the finger for one degree of freedom (DOF) actuation per finger. As two different types of cables are used, the system is termed a dual-cable hand exoskeleton system. Using the measured finger joint angles and motor current, the cable-driven actuation system applies the desired force to the fingers. That is, when the desired force is zero, the motor position is controlled to follow the finger posture while maintaining the appropriate cable slack; when the desired force needs to be applied, the motor current is controlled to generate the desired force. To achieve a smooth transition between the two control strategies, the control inputs were linearly integrated; and the desired motor position was generated to prevent a sudden motor rotation. A prototype of the proposed system was manufactured with a weight of 320g, a volume of 13 × 23 × 8cm3, maximum force up to 5 N. The proposed control algorithms were verified by experiments with virtual reality applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.