Abstract

A dual-beam filtering patch antenna with two absorptive band-edge radiation nulls and four reflective stopband radiation nulls is proposed. By loading a pair of T-shaped metallic strip underneath the radiating patch, a modified TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">22</sub> mode with TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">20</sub> -like radiation pattern is obtained, which combines with the TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">20</sub> mode of the radiating patch, generating a wide operating band with symmetrical dual-beam radiation pattern. Two reflective radiation nulls are generated in both upper and lower stopbands for suppressing the out-of-band radiation. Through embedding two pairs of shorted small patch in the radiating patch, one absorptive radiation null combining with one absorptive resonant mode is produced at each band edge to absorb the band-edge incident energy, leading to a reduced reflection and sharp roll-off at both band edges, and therefore, the transceiver can be protected. With a total height of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$0.038~\lambda _{0}$ </tex-math></inline-formula> , a prototype is designed, fabricated, and measured, showing a −10 dB impedance bandwidth from 4.63 to 6.10 GHz with sharp band-edge roll-off, two radiation beams directed at ±40° with an in-band gain of 6.0 dBi, and high out-of-band suppression of over 15 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call