Abstract

We have developed a dual-app nucleoside analog, 5-selenophene-modified 2′-deoxyuridine (SedU), to probe the structure and ligand-binding properties of a G-rich segment present in the long terminal repeat (LTR) of the HIV-1 proviral DNA promoter region. The nucleoside probe is made of an environment-responsive fluorophore and X-ray crystallography phasing label (Se atom). SedU incorporated into LTR-IV sequence, fluorescently reports the formation of G-quadruplex (GQ) structure without affecting the native fold. Further, using the environment sensitivity of the probe, a fluorescence assay was designed to estimate the binding affinity of small molecule ligands to the GQ motif. An added feature of this probe system is that it would enable direct correlation of structure and recognition properties in solution and atomic level by using a combination of fluorescence and X-ray crystallography techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.