Abstract
Ultra-wideband (UWB) systems use high-bandwidth signals to enable a new generation of ultra-high-data-rate wireless applications. Implementation of a high-bandwidth RF system in the 3-5 GHz band presents challenges that can be solved by circuit and system techniques. This article looks at the motivation and requirements for a WiMedia-compliant UWB system implemented for a target application in wireless video transmission. It explores the circuit-level trade-offs in CMOS radio and some of the system-level methods, such as selection diversity and equal-gain combining, used to increase robustness in multipath and interference environments. The radio (S. Lo, 2006) is part of a two-chip solution that includes a digital baseband chip that implements the WiMedia-compliant PHY and MAC. The measured results of the 0.18 mum CMOS UWB transceiver demonstrate the efficacy of these techniques in the final RF and system performance
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.