Abstract

In this work, we developed a novel label-free and highly sensitive electrochemical (EC) biosensor for detection of microRNA (miRNA), which was based on the target-triggered and the Cu-based metal-organic frameworks (Cu-MOFs) mediated CHA-HCR dual-amplification process. Initially, the target miRNA triggered the catalytic hairpin assembly (CHA) process of hairpin DNA 1 (H1) and hairpin DNA 2 (H2) to produce massive double-stranded DNA (H1/H2) which could hybridize with the single-stranded DNA 1 (P1) to form capture probe (P1/H1/H2) on electrode surface, realizing the first amplification of input signals. Subsequently, hybridization chain reaction (HCR) between signal probe (H3-AuNPs/Cu-MOFs) and hairpin DNA 4 (H4) was activated by above capture probe (P1/H1/H2), leading to the second amplification of input signals. After the HCR process, numerous Cu-MOFs were immobilized on the electrode surface, which brought out the enhancement of electrochemical signals generating by Cu-MOFs. Herein, Cu-MOFs not only offered the lager surface area to decorate with gold nanoparticles (AuNPs) and hairpin DNA 3 (H3), but also served as the signal probe (H3-AuNPs/Cu-MOFs) to produce electrochemical signals by hybridizing with the capture probe on electrode surface. Therefore, the ingenious design of CHA-HCR-Cu-MOFs scheme enables the sensitive analysis of microRNA-21 (miR-21) with a broad linear range from 0.1 fM to 100 pM and a lower LOD of 0.02 fM. In addition, the outstanding specificity of this sensing strategy allows it successfully to be applied for determining miR-21 in real biological samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.