Abstract

In this paper, a dual algorithm, based on a smoothing function of Bertsekas (1982), is established for solving unconstrained minimax problems. It is proven that a sequence of points, generated by solving a sequence of unconstrained minimizers of the smoothing function with changing parametert, converges with Q-superlinear rate to a Kuhn-Tucker point locally under some mild conditions. The relationship between the condition number of the Hessian matrix of the smoothing function and the parameter is studied, which also validates the convergence theory. Finally the numerical results are reported to show the effectiveness of this algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.