Abstract

Accurately monitoring 24-h movement behaviors is a vital step for progressing the time-use epidemiology field. Past accelerometer-based measurement protocols are either hindered by lack of wear time compliance, or the inability to accurately discern activities and postures. Recent work has indicated that skin-attached dual-accelerometers exhibit excellent 24-h uninterrupted wear time compliance. This study extends this work by validating this system for classifying various physical activities and sedentary behaviors in children and adults. Seventy-five participants (42 children) were equipped with two Axivity AX3 accelerometers; one attached to their thigh, and one to their lower back. Ten activity trials (e.g., sitting, standing, lying, walking, running) were performed while under direct observation in a lab setting. Various time- and frequency-domain features were computed from raw accelerometer data, which were then used to train a random forest machine learning classifier. Model performance was evaluated using leave-one-out cross-validation. The efficacy of the dual-sensor protocol (relative to single sensors) was evaluated by repeating the modeling process with each sensor individually. Machine learning models were able to differentiate between six distinct activity classes with exceptionally high accuracy in both adults (99.1%) and children (97.3%). When a single thigh or back accelerometer was used, there was a pronounced drop in accuracy for nonambulatory activities (up to a 26.4% decline). When examining the features used for model training, those that took the orientation of both sensors into account concurrently were more important predictors. When previous wear time compliance results are taken together with our findings, it represents a promising step forward for monitoring and understanding 24-h time-use behaviors. The next step will be to examine the generalizability of these findings in a free-living setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.