Abstract

We arm researchers with a simple method to chart a macroscopic cortico-cortical connectivity network in living human subjects. The researcher provides a diffusion-magnetic resonance imaging (MRI) data set and N cortical regions of interest. In return, we provide an N xN structural adjacency matrix (SAM) quantifying the relative connectivity between all cortical region pairs. We also return a connectivity map for each pair to enable visualization of interconnecting fiber bundles. The measure of connectivity we devise is: 1) free of length bias, 2) proportional to fiber bundle cross-sectional area, and 3) invariant to an exchange of seed and target. We construct a 3-D lattice scaffolding (graph) for white-matter by drawing a link between each pair of voxels in a 26-voxel neighborhood for which their two respective principal eigenvectors form a sufficiently small angle. The connectivity between a cortical region pair is then measured as the maximum number of link-disjoint paths that can be established between them in the white-matter graph. We devise an efficient Edmonds-Karp-like algorithm to compute a conservative bound on the maximum number of link-disjoint paths. Using both simulated and authentic diffusion-tensor imaging data, we demonstrate that the number of link-disjoint paths as a measure of connectivity satisfies properties 1)-3), unlike the fraction of intersecting streamlines-the measure intrinsic to most existing probabilistic tracking algorithms. Finally, we present connectivity maps of some notoriously difficult to track longitudinal and contralateral fasciculi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call