Abstract
We present a coarse-grained (CG) model of a charged double-stranded DNA immersed in an electrolyte solution that can be used for a variety of electrokinetic applications. The model is based on an earlier rigid and immobile model of Weik et al. and includes now semi-flexibility and mobility, so that DNA dynamics can be sufficiently captured to simulate a full nanopore translocation process. To this end we couple the DNA hydrodynamically via a raspberry approach to a lattice-Boltzmann fluid and parametrize the counterions with a distant dependent friction. The electrokinetic properties of the CG DNA model inside an infinite cylinder is fitted against experimental data from Smeets et al. and all-atom simulation data from Kesselheim et al. The stiffness of our CG DNA is modeled via a harmonic angle potential fitted against experimental data of Brunet et al. Finally, the quality of our tuned parameters is tested by measuring the electrophoretic mobility of our DNA model for various numbers of base pairs and salt concentrations. Our results compare excellently with the experimental data sets of Stellwagen et al. and Hoagland et al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.