Abstract

High-efficiency electroencephalogram (EEG) dry electrodes are a key component of brain–computer interface (BCI) technology because of their direct contact with the scalp. In this study, a semi-flexible polydopamine (PDA)/Pt-TiO2 electrode is prepared for the dry-contact acquisition of EEG signals. The PDA biofilm adheres strongly to the scalp and maintains a dynamic balance of water and ions. The Pt nanoparticles and TiO2 nanotube array together result in fast electron transfer. Therefore, the interface impedance between the dry PDA/Pt-TiO2 electrode and scalp is as low as 19.63–24.53 kΩ. The spontaneous EEG signal collected simultaneously using the dry PDA/Pt-TiO2 and wet Ag/AgCl electrodes had a correlation coefficient of up to 99.9%. In a steady-state visual evoked potential (SSVEP)-based BCI system, the dry electrode was used to collect EEG feedback signals for stimulations at 27 different frequencies in the range of 7–19.25 Hz. For these feedback signals, O1, Oz, and O2 channels in the occipital area exhibited high signal-to-noise ratios of 11.3, 11.8, and 11 dB, respectively. A volunteer wore an EEG headband with three PDA/Pt-TiO2 dry electrodes and successfully controlled the robotic arm of the SSVEP-BCI system in the untrained mode. The dry PDA/Pt-TiO2 electrode-based EEG cap is comfortable to wear, the identification signals of the SSVEP paradigm are accurate, and it is suitable for controlling external devices including a keyboard in the SSVEP-BCI system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call