Abstract

In the current work, a mixed powder BiAgX solder paste system with the melting temperature above 260°C and comparable, or better, reliability to the high lead-containing solders has been studied. The mixed powder solder paste system is composed of a high-melting first alloy solder powder as a majority and the additive solder powder as a minority. The additive solder is designed to react aggressively with various surface finish materials before, or together with, the melting of the majority solder to form a controllable IMC layer. The IMC layer of the mixed powder system is controllable by the species and quantity of the additive solder, and it is observed to be insensitive to thermal aging and thermal cycling in current tests, while the high lead-containing solders show a considerable increase in IMC layer thickness. Microstructure investigation shows that the fishbone shaped IMC layer interlocks with the bonding interface between solder and components. Both micron-sized and nano-sized Ag-rich precipitations in the joints have been observed to be well distributed in the joint. The exposed Ag-rich particles and the surrounding stepwise pattern in the Bi matrix on the fracture surface indicate that these Ag-rich particles constrain the dislocation movement in Bi matrix, enhancing the strength and the ductility of the joint. Under thermal aging and thermal cycling, both the micron-sized and nano-sized Ag-rich precipitations exhibit only discernible and localized coarsening. The stable interfacial IMC together with the existence of the well-dispersed Ag-rich particles are attributed to the promising reliability in the BiAgX solder paste system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call