Abstract

Droop control is a load sharing strategy applied in conventional power systems. In this paper, droop control strategy has been adopted for the generators in a remote area power supply (RAPS) system in order to share active and reactive power load based on the rated capacities of the generators. Different characteristics of conventional and inverter-based energy resources make it difficult to share load in proportion to the rated capacities of the generators in a RAPS system. Therefore, this paper investigates the load sharing performance of different combinations of conventional and inverter-based energy resources in RAPS systems. The study scenarios investigated in this study comprised of conventional energy resources, inverter-based energy resources, and both conventional and inverter-based energy resources. Simulation results have illustrated the effectiveness of droop control strategy to share load among conventional and inverter-based energy resources in a RAPS system. Furthermore, due to different characteristics of generators, power sharing performance has impaired, in particular, in RAPS systems consisting of both conventional and inverter-based generators compared to the RAPS systems with generators of the same type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call