Abstract
Semantic communication and spectrum sharing are pivotal technologies in addressing the perennial challenge of scarce spectrum resources for the sixth-generation (6G) communication networks. Notably, scant attention has been devoted to investigating semantic resource allocation within spectrum sharing semantic communication networks, thereby constraining the full exploitation of spectrum efficiency. To mitigate interference issues between primary users and secondary users while augmenting legitimate signal strength, the introduction of Intelligent Reflective Surfaces (IRS) emerges as a salient solution. In this study, we delve into the intricacies of resource allocation for IRS-enhanced semantic spectrum sharing networks. Our focal point is the maximization of semantic spectral efficiency (S-SE) for the secondary semantic network while upholding the minimum quality of service standards for the primary semantic network. This entails the joint optimization of parameters such as semantic symbol allocation, subchannel allocation, reflective coefficients of IRS elements, and beamforming adjustment of secondary base station. Recognizing computational intricacies and interdependence of variables in the non-convex optimization problem formulated, we present a judicious approach: a hybrid intelligent resource allocation approach leveraging dueling double-deep Q networks coupled with the twin-delayed deep deterministic policy. Simulation results unequivocally affirm the efficacy of our proposed resource allocation approach, showcasing its superior performance relative to baseline schemes. Our approach markedly enhances the S-SE of the secondary network, thereby establishing its prowess in advancing the frontiers of semantic spectrum sharing (S-SE).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.