Abstract
Job scheduling has always been a challenging task in modern manufacturing and the most real life scheduling problems which involves multi-criteria, multi-machine environments. In this research, the single-machine scheduling problem is studied in which job processing times are controllable, namely, they may vary within a specified interval. The goal of this research is to minimize total tardiness and earliness on a single machine, simultaneously. In this context, we first propose a mathematical model for the considered problem and then a net benefit compression–net benefit expansion heuristic is presented for obtaining the set of amounts of compression and expansion of jobs processing times in a given sequence. Two meta-heuristic approaches are then employed to solve medium-to-large-sized problems as local search methods. Thereafter, we apply a hybrid method based on our heuristic as well as these two meta-heuristics in order to obtain solutions with higher quality within lesser computational time. The addressed problem is NP-hard since the single machine total tardiness problem is already NP-hard. The computational results show that our proposed heuristics can effectively solve such Just-In-Time problem with a high-quality solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.