Abstract

There is a need for a simple and predictive model to identify the respiratory sensitization potential of (novel) proteins. The present study examined the use of a mouse draining lymph node assay (DLNA) approach, employing several routes of exposure, as a possible starting point for assessing protein sensitization potential. Consistent with the experimental procedure for the standard local lymph node assay (LLNA), female BALB/c mice were dosed dermally (topical), intranasally (IN) or by oropharyngeal aspiration (OP) on days 1, 2 and 3, and proliferation in the relevant draining lymph nodes was measured on day 6. For each route, the auricular, superficial cervical and tracheobronchial lymph nodes (TBLN) were evaluated following treatment with Subtilisin Carlsberg (SUB; a potent sensitizer/allergen), ovalbumin (OVA; a potent food allergen), β-lactoglobulin (BLG; a moderate food allergen), and keyhole limpet hemocyanin (KLH; a strong immunogen with no reports of respiratory sensitization). Initial studies with OVA indicated that dermal administration did not stimulate lymph node proliferation. Responses in the tracheobronchial lymph node were most dramatic (stimulation indices up to 100) and reproducible for both the IN and OP routes. In a comparative experiment, all proteins induced lymph node proliferation with a rank order potency of SUB > KLH > OVA > BLG. The influence of the endotoxin content on lymph node proliferation was determined to be minimal, and did not impact the rank order potency. Molecular characterization of the TBLN at an equipotent proliferative dose was conducted for select gene transcripts based on research examining chemical sensitizers. Expression profiles differed among the four proteins, but the relevance of these responses was not clear and they did not further discriminate their allergic potential. These data illustrate both the opportunities and challenges associated with the examination of the draining lymph node proliferative response to assess the allergenic potential of proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.