Abstract

The sequence of the rice genome holds fundamental information for its biology, including physiology, genetics, development, and evolution, as well as information on many beneficial phenotypes of economic significance. Using a "whole genome shotgun" approach, we have produced a draft rice genome sequence of Oryza sativa ssp. indica, the major crop rice subspecies in China and many other regions of Asia. The draft genome sequence is constructed from over 4.3 million successful sequencing traces with an accumulative total length of 2214.9 Mb. The initial assembly of the non-redundant sequences reached 409.76 Mb in length, based on 3.30 million successful sequencing traces with a total length of 1797.4 Mb from an indica variant cultivar 93-11, giving an estimated coverage of 95.29% of the rice genome with an average base accuracy of higher than 99%. The coverage of the draft sequence, the randomness of the sequence distribution, and the consistency of BIG-ASSEMBLER, a custom-designed software package used for the initial assembly, were verified rigorously by comparisons against finished BAC clone sequences from both indica and japanica strains, available from the public databases. Over all, 96.3% of full-length cDNAs, 96.4% of STS, STR, RFLP markers, 94.0% of ESTs and 94.9% unigene clusters were identified from the draft sequence. Our preliminary analysis on the data set shows that our rice draft sequence is consistent with the comman standard accepted by the genome sequencing community. The unconditional release of the draft to the public also undoubtedly provides a fundamental resource to the international scientific communities to facilitate genomic and genetic studies on rice biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.