Abstract

In recent years, the flexible job shop dynamic scheduling problem (FJDSP) has received considerable attention; however, FJDSP with transportation resource constraint is seldom investigated. In this study, FJDSP with transportation resource constraint is considered and an improved non-dominated sorting genetic algorithm-III (NSGA-III) algorithm (DQNSGA) integrated with reinforcement learning (RL) is proposed. In DQNSGA, an initialization method based on heuristic rules and an insertional greedy decoding approach are designed, and a double-Q Learning with an improved ε-greedy strategy is used to adaptively adjust the key parameters of NSGA-III. An improved elite selection strategy is also applied. Through extensive experiments and practical case studies, this algorithm has been compared with three other well-known algorithms. The results demonstrate that DQNSGA exhibits significant effectiveness and superiority in all tests. The research presented in this paper enables effective adjustments of production plans in response to dynamic events, which is of critical importance for production management in the manufacturing industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.