Abstract
The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major autoantigen in autoimmune diabetes. The heterologous production of hGAD65 for diagnostic and therapeutic applications is hampered by low upstream productivity and the absence of a robust and efficient downstream process for product isolation. A tobacco-based platform has been developed for the production of an enzymatically-inactive form of the protein (hGAD65mut), but standard downstream processing strategies for plant-derived recombinant proteins cannot be used in this case because the product is amphiphilic. We therefore evaluated different extraction buffers and an aqueous micellar two-phase system (AMTPS) to optimize the isolation and purification of hGAD65mut from plants. We identified the extraction conditions offering the greatest selectivity for hGAD65mut over native tobacco proteins using a complex experimental design approach. Under our optimized conditions, the most efficient initial extraction and partial purification strategy achieved an overall hGAD65mut yield of 92.5% with a purification factor of 12.3 and a concentration factor of 23.8. The process also removed a significant quantity of phenols, which are major contaminants present in tobacco tissue. This is the first report describing the use of AMTPS for the partial purification of an amphiphilic recombinant protein from plant tissues and our findings could also provide a working model for the initial recovery and partial purification of hydrophobic recombinant proteins from transgenic tobacco plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.