Abstract

In this paper, we study the compressed sensing (CS) image recovery problem. The traditional method divides the image into blocks and treats each block as an independent sub-CS recovery task. This often results in losing global structure of an image. In order to improve the CS recovery result, we propose a nonlocal (NL) estimation step after the initial CS recovery for denoising purpose. The NL estimation is based on the well-known NL means filtering that takes an advantage of self-similarity in images. We formulate the NL estimation as the low-rank matrix approximation problem, where the low-rank matrix is formed by the NL similarity patches. An efficient algorithm, nonlocal Douglas-Rachford (NLDR), based on Douglas-Rachford splitting is developed to solve this low-rank optimization problem constrained by the CS measurements. Experimental results demonstrate that the proposed NLDR algorithm achieves significant performance improvements over the state-of-the-art in CS image recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.