Abstract

In order to overcome this challenge of poor stability of natural anthocyanins in intelligent packaging materials, roselle anthocyanin (RA) was first modified by acetic acid, and then a double-layer smart indication antimicrobial film was developed using modified roselle anthocyanin (MRA)-gellan gum (GG) as the inner layer and sodium carboxymethyl cellulose (CMC)-starch (ST)-Nisin as the outer layer. UV spectra revealed that acetic acid was successfully grafted onto RA, which dramatically improved their thermal stability, antioxidant capabilities, photostability, and pH stability. The bilayer films were successfully prepared, as revealed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction measurements. In comparison to GG-MRA and CMC-ST-Nisin films, the water content, water solubility, mechanical characteristics, water vapor barrier, oxygen barrier, and hydrophobicity of GG-MRA@CMC-ST-Nisin films were significantly enhanced. The presence of the outer layer films significantly enhanced the UV–vis light barrier, opacity, antioxidant and antibacterial properties of the inner layer films. When the films were applied to chicken breast, it was found that the indicator films not only monitored the freshness of the chicken in real-time but also that the GG-MRA film and the double-layer film were effective in extending the shelf life of the chicken by 1 and 2 days, respectively, compared to the control group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call