Abstract

The unprecedented growth of mobile data traffic challenges the performance and economic viability of today's cellular networks and calls for novel network architectures and communication solutions. Mobile data offloading through third-party Wi-Fi or femtocell access points (APs) can significantly alleviate the cellular congestion and enhance user quality of service (QoS), without requiring costly and time-consuming infrastructure investments. This solution has substantial benefits both for the mobile network operators (MNOs) and the mobile users, but comes with unique technical and economic challenges that must be jointly addressed. In this paper, we consider a market where MNOs lease APs that are already deployed by residential users for the offloading purpose. We assume that each MNO can employ multiple APs, and each AP can concurrently serve traffic from multiple MNOs. We design an iterative double-auction mechanism that ensures the efficient operation of the market by maximizing the differences between the MNOs' offloading benefits and APs' offloading costs. The proposed scheme takes into account the particular characteristics of the wireless network, such as the coupling of MNOs' offloading decisions and APs' capacity constraints. Additionally, it does not require full information about the MNOs and APs and creates non-negative revenue for the market broker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call