Abstract

The rheological properties of complex fluid interfaces are of prime importance in a number of technological and biological applications. Whereas several methods have been proposed to measure the surface rheological properties, it remains an intrinsically challenging problem due to the small forces and torques involved and due to the intricate coupling between interfacial and bulk flows. In the present work, a double wall-ring geometry to measure the viscoelastic properties of interfaces in shear flows is presented. The geometry can be used in combination with a modern rotational rheometer. A numerical analysis of the flow field as a function of the surface viscoelastic properties is presented to evaluate the non-linearities in the surface velocity profile at a low Boussinesq number. The sensitivity of the geometry, as well as its applicability, are demonstrated using some reference Newtonian and viscoelastic fluids. Oscillatory and steady shear measurements on these reference complex fluid interfaces demonstrate the intrinsic sensitivity, the accuracy, and the dynamic range of the geometry when used in combination with a sensitive rheometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.