Abstract

The application of Ca isotopic analysis in biomedical studies has great potential to identify changes in Ca metabolism and bone metabolism. Reliable measurement of Ca isotope-amount ratios is challenging considering limited Ca amounts and significant procedural blank levels. In this study, Ca purification was performed using the DGA Resin, optimized for low procedural blanks and separation of Ca from matrix elements and isobaric interferences (Na, Mg, K, Ti, Fe, Ba), while maintaining quasi-quantitative recoveries which are sufficient since a 42Ca-48Ca double-spike (DS) was applied. Ca isotopic analysis was performed using multicollector thermal ionization mass spectrometry (MC TIMS). The obtained procedural Ca blank of ≤10ng enables processing of limited Ca amounts down to 670ng. Data reduction of the measured Ca isotope-amount ratios was performed using an in-house developed software solving the DS algorithm. Data quality was improved by extension of equilibration time of the sample-DS mixture and implementation of a normalization strategy for raw isotopic data. The reported δ(44Ca/40Ca)NIST SRM 915a of NIST SRM 915a processed as a sample was found to be 0.01‰ ± 0.08‰ (2 SD, n = 15). Ca isotope-amount ratios of the reference material NIST SRM 1400 (bone ash), NIST SRM 1486 (bone meal), GBW07601 (human hair), and IAPSO (seawater) were in good agreement within uncertainty with literature data. Novel data on additional reference materials for biological tissues (hair) is presented, which might indicate a potential fractionation of Ca incorporated into hair tissue when compared to the blood pool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.