Abstract
AbstractA double‐moment version of the SBU‐YLIN cloud microphysical scheme in WRF is introduced. It predicts the mass and number mixing ratios of cloud droplet, rain, cloud ice, and precipitating ice. In addition, a number of physical processes, like rain evaporation, collection between rain and snow are also optimized in the new scheme. The scheme is evaluated and compared with the original one‐moment scheme for a squall line case. We found that the double‐moment approach gives a better representation of rain evaporation, which is critical for the development, morphology, and evolution of the simulated squall line, especially for the enhanced trailing stratiform cloud and leading convective line. The relationship between key microphysical processes and squall line dynamics is investigated to identify the driving mechanisms of the descending rear inflow, cold pool, and slantwise updraft. Furthermore, formation of the transition zone in the simulated squall line strongly depends on the flexible description of ice particle properties, such as size, degree of riming and fall speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.