Abstract
Feynman integrals are central to all calculations in perturbative Quantum Field Theory. They often give rise to iterated integrals of $d\log$-forms with algebraic arguments, which in many cases can be evaluated in terms of multiple polylogarithms. This has led to certain folklore beliefs in the community stating that all such integrals evaluate to polylogarithms. Here we discuss a concrete example of a double iterated integral of two $d\log$-forms that evaluates to a period of a cusp form. The motivic versions of these integrals are shown to be algebraically independent from all multiple polylogarithms evaluated at algebraic arguments. From a mathematical perspective, we study a mixed elliptic Hodge structure arising from a simple geometric configuration in $\mathbb{P}^2$, consisting of a modular plane elliptic curve and a set of lines which meet it at torsion points, which may provide an interesting worked example from the point of view of periods, extensions of motives, and $L$-functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.