Abstract
Objectives: To investigate the variations in the TNNI3 gene in a Chinese Han family affected by hypertrophic cardiomyopathy (HCM) and the potential molecular mechanism linking these mutations with disease. Methods: Peripheral venous blood was acquired from family members, and TNNI3 mutations were identified by DNA sequencing. The pathophysiology of TNNI3 mutations was investigated using bioinformatics, subcellular localization determination and Western blotting. Results: Sanger sequencing revealed that the proband possessed 2 heterozygous mutations, c.235C>T and c.470C>T, located at exons 4 and 6 of the TNNI3 gene. The proband (II-2) and her brother (II-1), who had been previously diagnosed with HCM, harbored both mutations whereas their healthy parents harbored only 1. Alignment of the TNNI3 amino acid sequence indicated that the two Pro residues were highly conserved across species. Subcellular localization showed that both wild-type (WT) and mutant TNNI3 proteins were localized at the cell nucleus. Western blot analysis of expression in human embryonic kidney 293T cells showed that the intracellular levels of the mutant proteins were significantly decreased compared to WT TNNI3 (p < 0.01). Conclusions: Our findings showed that a double heterozygous mutation in the TNNI3 gene is involved in the pathogenesis of HCM via haploinsufficiency. These results will inspire further studies to investigating the link between the TNNI3 gene and HCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Cardiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.