Abstract

In this study, separate absorption, grading, charge, and multiplication (SAGCM) avalanche photodiode (APD) with double heterojunction AlN/AlxGa1-xN/GaN in multiplication region were designed to reduce excess noise using Monte Carlo simulation. The multiplication region was broken to three different regions and tried to enhance localization of the first and second impact ionization events at near the heterojunctions. The excess noise of the proposed structure, for high gains, was 64% smaller than that of the fabricated standard AlGaN-APDs.

Highlights

  • Avalanche photodiodes (APDs) fabricated on AlGaN materials are suitable for ultraviolet (UV) wavelengths detections, enjoying advantages such as low dark current density, high receiver sensitivity, high gain, low noise, and cut-off wavelengths around 280 nm [1] [2] [3]

  • We presented and designed a wide band gap SAGCM-APD with Al0.4Ga0.6N in absorption region and a DH AlN/Al0.4Ga0.6N/GaN in multiplication region to reduce excess noise

  • Our study demonstrated that the large amount of conduction band discontinuity, always, did not enhance localization of impact ionization events near the hetero-interface

Read more

Summary

Introduction

Avalanche photodiodes (APDs) fabricated on AlGaN materials are suitable for ultraviolet (UV) wavelengths detections, enjoying advantages such as low dark current density, high receiver sensitivity, high gain, low noise, and cut-off wavelengths around 280 nm [1] [2] [3]. In fabricating the aforementioned reproducible high performance APDs, Tut et al have taken the necessary technological and theoretical measures for producing low noise devices, noise optimization in AlGaN based APDs by means of impact-ionization-engineered (I2E) multiplication region [7] remains to be a new challenge.

The Proposed Structure
Results and Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.