Abstract

In wireless communication systems, mobility tracking deals with determining a mobile subscriber (MS) covering the area serviced by the wireless network. Tracking a mobile subscriber is governed by the two fundamental components called location updating (LU) and paging. This paper presents a novel hybrid method using a krill herd algorithm designed to optimize the location area (LA) within available spectrum such that total network cost, comprising location update (LU) cost and cost for paging, is minimized without compromise. Based on various mobility patterns of users and network architecture, the design of the LR area is formulated as a combinatorial optimization problem. Numerical results indicate that the proposed model provides a more accurate update boundary in real environment than that derived from a hexagonal cell configuration with a random walk movement pattern. The proposed model allows the network to maintain a better balance between the processing incurred due to location update and the radio bandwidth utilized for paging between call arrivals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.