Abstract

A frequency-modulated continuous-wave radar for short-range target imaging, assembling a transceiver, a PLL, an SP4T switch, and a serial patch antenna array, was realized. A new algorithm based on a double Fourier transform (2D-FT) was developed and compared with the delay and sum (DAS) and multiple signal classification (MUSIC) algorithms proposed in the literature for target detection. The three reconstruction algorithms were applied to simulated canonical cases evidencing radar resolutions close to the theoretical ones. The proposed 2D-FT algorithm exhibits an angle of view greater than 25° and is five times faster than DAS and 20 times faster than the MUSIC one. The realized radar shows a range resolution of 55 cm and an angular resolution of 14° and is able to correctly identify the positions of single and multiple targets in realistic scenarios, with errors lower than 20 cm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.