Abstract
This paper develops algorithms for the pricing of discretely sampled barrier, lookback, and hindsight options and discretely exercisable American options. Under the Black-Scholes framework, the pricing of these options can be reduced to evaluation of a series of convolutions of the Gaussian distribution and a known function. We compute these convolutions efficiently using the double-exponential integration formula and the fast Gauss transform. The resulting algorithms have computational complexity of O(nN), where the number of monitoring/exercise dates is n and the number of sample points at each date is N, and our results show the error decreases exponentially with N. We also extend the approach and provide results for Merton’s lognormal jump-diffusion model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.