Abstract
Abnormal gait recognition is important for detecting body part weakness and diagnosing diseases. The abnormal gait hides a considerable amount of information. In order to extract the fine, spatial feature information in the abnormal gait and reduce the computational cost arising from excessive network parameters, this paper proposes a double-channel multiscale depthwise separable convolutional neural network (DCMSDSCNN) for abnormal gait recognition. The method designs a multiscale depthwise feature extraction block (MDB), uses depthwise separable convolution (DSC) instead of standard convolution in the module and introduces the Bottleneck (BK) structure to optimize the MDB. The module achieves the extraction of effective features of abnormal gaits at different scales, and reduces the computational cost of the network. Experimental results show that the gait recognition accuracy is up to 99.60%, while the memory size of the model is reduced 4.21 times than before optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.