Abstract
BackgroundPatients with severe pneumonia often develop septic shock. IgM-enriched immunoglobulins have been proposed as a potential adjuvant therapy for septic shock. While in vitro data are available on the possible mechanisms of action of IgM-enriched immunoglobulins, the results of the in vivo experimental studies are non-univocal and, overall, unconvincing. We designed this double blinded randomized controlled study to test whether IgM-enriched immunoglobulins administered as rescue treatment in a pneumonia model developing shock, could either limit lung damage and/or contain systemic inflammatory response. MethodsThirty-eight Sprague Dawley rats were ventilated with injurious ventilation for 30min to prime the lung. The rats were subsequently randomized to received intratracheal instillation of either lipopolysaccharide (LPS) (12mg/kg) or placebo followed by 3.5h of protective mechanical ventilation. IgM-enriched immunoglobulins at 25mg/h (0.5mL/h) or saline were intravenously administered in the last hour of mechanical ventilation. During the experiment, gas exchange and hemodynamic measurements were recorded. Thereafter, the animals were sacrificed, and blood and organs were stored for cytokines measurements. ResultsDespite similar lung and hemodynamic findings, the administration of IgM-enriched immunoglobulins compared to placebo significantly modulates the inflammatory response by increasing IL-10 levels in the bloodstream and by decreasing TNF-α in bronchoalveolar lavage (BAL) fluid. Furthermore, in vitro data suggest that IgM-enriched immunoglobulins induce monocytes production of IL-10 after LPS stimulation. ConclusionsIn an in vivo model of pneumonia developing shock, IgM-enriched immunoglobulins administered as rescue treatment enhance the anti-inflammatory response by increasing blood levels of IL-10 and reducing TNF-α in BAL fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.