Abstract

BackgroundRespiration-gated radiotherapy can permit the irradiation of smaller target volumes. 4DCT scans performed for routine treatment were retrospectively analyzed to establish the benefits of gating in stage III non-small cell lung cancer (NSCLC).Materials and methodsGross tumor volumes (GTVs) were contoured in all 10 respiratory phases of a 4DCT scan in 15 patients with stage III NSCLC. Treatment planning was performed using different planning target volumes (PTVs), namely: (i) PTVroutine, derived from a single GTV plus 'conventional' margins; (ii) PTVall phases incorporating all 3D mobility captured by the 4DCT; (iii) PTVgating, incorporating residual 3D mobility in 3–4 phases at end-expiration. Mixed effect models were constructed in order to estimate the reductions in risk of lung toxicity for the different PTVs.ResultsIndividual GTVs ranged from 41.5 – 235.0 cm3. With patient-specific mobility data (PTVall phases), smaller PTVs were derived than when 'standard' conventional margins were used (p < 0.001). The average residual 3D tumor mobility within the gating window was 4.0 ± 3.5 mm, which was 5.5 mm less than non-gated tumor mobility (p < 0.001). The reductions in mean lung dose were 9.7% and 4.9%, respectively, for PTVall phases versus PTVroutine, and PTVgating versus PTVall phases. The corresponding reductions in V20 were 9.8% and 7.0%, respectively. Dosimetric gains were smaller for primary tumors of the upper lobe versus other locations (p = 0.02). Respiratory gating also reduced the risks of radiation-induced esophagitis.ConclusionRespiration-gated radiotherapy can reduce the risk of pulmonary toxicity but the benefits are particularly evident for tumors of the middle and lower lobes.

Highlights

  • Respiration-gated radiotherapy can permit the irradiation of smaller target volumes. 4DCT scans performed for routine treatment were retrospectively analyzed to establish the benefits of gating in stage III non-small cell lung cancer (NSCLC)

  • Respiration-gated radiotherapy can reduce the risk of pulmonary toxicity but the benefits are evident for tumors of the middle and lower lobes

  • Volumetric comparison of planning target volumes (PTVs) The individual Gross tumor volumes (GTVs) ranged from 41.52 cc to 235.04 cc, and six GTVs were larger than 150 cc (Table 1)

Read more

Summary

Introduction

Respiration-gated radiotherapy can permit the irradiation of smaller target volumes. 4DCT scans performed for routine treatment were retrospectively analyzed to establish the benefits of gating in stage III non-small cell lung cancer (NSCLC). Respiration-gated radiotherapy can permit the irradiation of smaller target volumes. As lung tumors can show significant respiration-induced motion [1,2], sufficient margins have to be added to account for target mobility in radiotherapy planning [3]. For stage I non-small cell lung cancer (NSCLC), commonly used 'population-based' margins result in unnecessary irradiation of significant amounts of normal tissue [2,4], thereby increasing the risk of toxicity. For stage III (page number not for citation purposes). Primary tumor location T2N2M0 T3N2M0 T2N3M0 T3N3M0 T1N3M0 T4N3M0

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call