Abstract

Background: Several studies employing cell culture and animal models have suggested that arsenic (As) exposure induces global DNA hypomethylation. However, As has been associated with global DNA hypermethylation in human study populations. We hypothesized that this discrepancy may reflect a nonlinear relationship between As dose and DNA methylation.Objective: The objective of this study was to examine the dose–response relationship between As and global methylation of peripheral blood mononuclear cell (PBMC) DNA in apparently healthy Bangladeshi adults chronically exposed to a wide range of As concentrations in drinking water.Methods: Global PBMC DNA methylation, plasma folate, blood S-adenosylmethionine (SAM), and concentrations of As in drinking water, blood, and urine were measured in 320 adults. DNA methylation was measured using the [3H]-methyl incorporation assay, which provides disintegration-per-minute (DPM) values that are negatively associated with global DNA methylation.Results: Water, blood, and urinary As were positively correlated with global PBMC DNA methylation (p < 0.05). In multivariable-adjusted models, 1-μg/L increases in water and urinary As were associated with 27.6-unit (95% CI: 6.3, 49.0) and 22.1-unit (95% CI: 0.5, 43.8) decreases in DPM per microgram DNA, respectively. Categorical models indicated that estimated mean levels of PBMC DNA methylation were highest in participants with the highest As exposures.Conclusions: These results suggest that As is positively associated with global methylation of PBMC DNA over a wide range of drinking water As concentrations. Further research is necessary to elucidate underlying mechanisms and physiologic implications.Citation: Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, Ilievski V, Levy D, van Geen A, Mey JL, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV. 2013. A dose–response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environ Health Perspect 121:1306–1312; http://dx.doi.org/10.1289/ehp.1206421

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.