Abstract

Vimentin is the main intermediate filament (IF) protein of mesenchymal cells and tissues. Unlike other IF-/- mice, vimentin-/- mice provided no evidence of an involvement of vimentin in the development of a specific disease. Therefore, we generated two transgenic mouse lines, one with a (R113C) point mutation in the IF-consensus motif in coil1A and one with the complete deletion of coil 2B of the rod domain. In epidermal keratins and desmin, point mutations in these parts of the alpha-helical rod domain cause keratinopathies and desminopathies, respectively. Here, we demonstrate that substoichiometric amounts of vimentin carrying the R113C point mutation disrupted the endogenous vimentin network in all tissues examined but caused a disease phenotype only in the eye lens, leading to a posterior cataract that was paralleled by the formation of extensive protein aggregates in lens fibre cells. Unexpectedly, central, postmitotic fibres became depleted of aggregates, indicating that they were actively removed. In line with an increase in misfolded proteins, the amounts of Hsp70 and ubiquitylated vimentin were increased, and proteasome activity was raised. We demonstrate here for the first time that the expression of mutated vimentin induces a protein-stress response that contributes to disease pathology in mice, and hypothesise that vimentin mutations cause cataracts in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call