Abstract

The intricate system of serum complement proteins provides resistance to infection. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial binding C3 fragments recognized by leukocytes. The spleen and C3 provide resistance against blood-borne S. pneumoniae infection. To better understand the mechanisms involved, we studied SIGN-R1, a lectin that captures microbial polysaccharides in spleen. Surprisingly, conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-R1(+) spleen macrophages, and formation of C3 ligands. We found that SIGN-R1 directly bound the complement C1 subcomponent, C1q, and assembled a C3 convertase, but without the traditional requirement for either antibody or factor B. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.