Abstract

In this paper, we present a domain-specific language, referred to as OptiSDR, that matches high level digital signal processing (DSP) routines for software defined radio (SDR) to their generic parallel executable patterns targeted to heterogeneous computing architectures (HCAs). These HCAs includes a combination of hybrid GPU-CPU and DSP-FPGA architectures that are programmed using different programming paradigms such as C/C++, CUDA, OpenCL, and/or VHDL. OptiSDR presents an intuitive single high-level source code and near specification-level approach for optimization and facilitation of HCAs. OptiSDR uses an optimized embedded domain-specific language (DSL) compiler framework called Delite. Our focus is on the programming language expressiveness for parallel programming and optimization of typical DSP algorithms for deployment on SDR HCAs. We demonstrate the capability of OptiSDR to express the solution to the issues of parallel DSP low-level implementation complexities in the closest way to the original parallel programming of SDR systems. This paper will achieve these by focusing on three generic parallel executable patterns suitable for DSP routines such as cross-correlation, convolution in FIR filter based Hilbert transformers, and fast Fourier transforms for spectral analysis. This paper concludes with a performance analysis using DSP algorithms that tests automatically generated code against hand-crafted solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.