Abstract
The present work deals with an evaluation of stress intensity factors (SIFs) along straight crack fronts and edges in three-dimensional isotropic elastic solids. A new numerical approach is developed for extraction, from a solution obtained by the boundary element method (BEM), of those SIFs, which are relevant for a failure assessment of mechanical components. In particular, the generalized SIFs associated to eigensolutions characterized by unbounded stresses at a neighbourhood of the crack front or a reentrant edge and also that associated to T-stress at the crack front can be extracted. The method introduced is based on a conservation integral, called H-integral, which leads to a new domain-independent integral represented by a scalar product of the SIF times some element shape function defined along the crack front or edge. For sufficiently small element lengths these weighted averages of SIFs give reasonable pointwise estimation of the SIFs. A proof of the domain integral independency, based on the bi-orthogonality of the classical two-dimensional eigensolutions associated to a corner problem, is presented. Numerical solutions of two three-dimensional problems, a crack problem and a reentrant edge problem, are presented, the accuracy and convergence of the new approach for SIF extraction being analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.